86 research outputs found

    The research and development of ChemGrid in CGSP

    Full text link
    With the rapid development of computing technologies and network technologies, Grid technology has emerged as the solution for high-performance computing. Recently, the grid of orient-services has become a hot issue in this research area. In this paper, we propose an architecture of ChemGrid in CGSP (China Grid Support Platform). The effectiveness of the proposed architecture is demonstrated by an example which is developed as a Web service based on CGSP; the Web service is used for searching elements in the periodic table. An improvement of the user interface for applications is proposed in order to obtain results interactively. Finally, an extension of ChemGrid is discussed in order to integrate different types of resources and provide specialized services.<br /

    Comprehensive Numerical Investigations of Unsteady Internal Flows and Cavitation Characteristics in Double-Suction Centrifugal Pump

    Get PDF
    The RNG k-ε turbulence model combined with cavitation model was used to simulate unsteady cavitating flows inside a double-suction centrifugal pump under different flow rate conditions based on hexahedral structured grid. The numerical external characteristic performances agree well with the experimental performances. The predicted results show that the turbulence kinetic energy and the turbulence dissipation rate inside the impeller at design flow rate are lower than those at other off-design flow rates, which are caused by various vortexes. Based on frequency-domain analyses in the volute casing, the blade passing frequency is the dominant one of the pressure fluctuations except the vicinity of volute tongue for all operating cases, and the dominant frequency near the volute tongue ranges from 0 to 0.5 times the blade passing frequency for other off-design points, while the blade passing one near the volute tongue is the dominant one of the pressure fluctuations at design point. The increase of flow rate reduces the pressure fluctuations amplitude. For cavitation cases, the blade loading of the middle streamline increases a bit during the initial stage, but, for serious cavitation, the blade loading near the blade inlet reduces to 0 and even negative values, and the serious cavitation bubbles block the blade channels, which results in a sharp drop in pump head. Under noncavitation condition, the predicted power related to the pressure in the impeller channels increases from the inlet to the exit, while, under different cavitation conditions at the design flow rate, these power-transformation distributions in the impeller channels show that these power conversions are affected by the available NPSHa and the corresponding work in leading regions of the blades increases increases gradually a bit, and then it increases sharply in the middle regions, but it decreases in the blade trailing regions and is greatly influenced by secondary flows

    Optimization and validation of the protocol used to analyze the taste of traditional Chinese medicines using an electronic tongue

    Get PDF
    Tools to define the active ingredients and flavors of Traditional Chinese Medicines (TCMs) are limited by long analysis times, complex sample preparation and a lack of multiplexed analysis. The aim of the present study was to optimize and validate an electronic tongue (E‑tongue) methodology to analyze the bitterness of TCMs. To test the protocol, 35 different TCM concoctions were measured using an E‑tongue, and seven replicate measurements of each sample were taken to evaluate reproducibility and precision. E‑tongue sensor information was identified and classified using analysis approaches including least squares support vector machine (LS‑SVM), support vector machine (SVM), discriminant analysis (DA) and partial least squares (PLS). A benefit of this analytical protocol was that the analysis of a single sample took \u3c15 min for all seven sensors. The results identified that the LS‑SVM approach provided the best bitterness classification accuracy (binary classification accuracy, 100%; ternary classification accuracy, 89.66%). The E‑tongue protocol developed showed good reproducibility and high precision within a 6 h measurement cycle. To the best of our knowledge, this is the first study of an E‑tongue being applied to assay the bitterness of TCMs. This approach could be applied in the classification of the taste of TCMs, and serve important roles in other fields, including foods and beverages

    Kinetics of Reduction of Fe(III) Complexes by Outer Membrane Cytochromes MtrC and OmcA of \u3ci\u3eShewanella oneidensis\u3c/i\u3e MR-1

    Get PDF
    Because of their cell surface locations, the outer membrane c-type cytochromes MtrC and OmcA of Shewanella oneidensis MR-1 have been suggested to be the terminal reductases for a range of redox-reactive metals that form poorly soluble solids or that do not readily cross the outer membrane. In this work, we determined the kinetics of reduction of a series of Fe(III) complexes with citrate, nitrilotriacetic acid (NTA), and EDTA by MtrC and OmcA using a stopped-flow technique in combination with theoretical computation methods. Stopped-flow kinetic data showed that the reaction proceeded in two stages, a fast stage that was completed in less than 1 s, followed by a second, relatively slower stage. For a given complex, electron transfer by MtrC was faster than that by OmcA. For a given cytochrome, the reaction was completed in the order Fe-EDTA \u3e Fe-NTA \u3e Fe-citrate. The kinetic data could be modeled by two parallel second-order bimolecular redox reactions with second-order rate constants ranging from 0.872 µM-1 s-1 for the reaction between MtrC and the Fe-EDTA complex to 0.012µM-1 s-1 for the reaction between OmcA and Fe-citrate. The biphasic reaction kinetics was attributed to redox potential differences among the heme groups or redox site heterogeneity within the cytochromes. The results of redox potential and reorganization energy calculations showed that the reaction rate was influenced mostly by the relatively large reorganization energy. The results demonstrate that ligand complexation plays an important role in microbial dissimilatory reduction and mineral transformation of iron, as well as other redox-sensitive metal species in nature

    Effect of Temperature on Electromagnetic Performance of Active Phased Array Antenna

    Get PDF
    Active phased array antennas (APAAs) can suffer from the effects of harsh thermal environments, which are caused by the large quantity of power generated by densely packed T/R modules and external thermal impacts. The situation may be worse in the case of limited room and severe thermal loads, due to heat radiation and a low temperature sink. The temperature field of the antenna can be changed. Since large numbers of temperature-sensitive electronic components exist in T/R modules, excitation current output can be significantly affected and the electromagnetic performance of APAAs can be seriously degraded. However, due to a lack of quantitative analysis, it is difficult to directly estimate the effect of temperature on the electromagnetic performance of APAAs. Therefore, this study investigated the electromagnetic performance of APAAs as affected by two key factors—the uniformly distributed temperature field and the temperature gradient field—based on different antenna shapes and sizes, to provide theoretical guidance for their thermal design

    Assessing the clinical utility of cancer genomic and proteomic data across tumor types

    Get PDF
    Molecular profiling of tumors promises to advance the clinical management of cancer, but the benefits of integrating molecular data with traditional clinical variables have not been systematically studied. Here we retrospectively predict patient survival using diverse molecular data (somatic copy-number alteration, DNA methylation and mRNA, miRNA and protein expression) from 953 samples of four cancer types from The Cancer Genome Atlas project. We found that incorporating molecular data with clinical variables yielded statistically significantly improved predictions (FDR < 0.05) for three cancers but those quantitative gains were limited (2.2–23.9%). Additional analyses revealed little predictive power across tumor types except for one case. In clinically relevant genes, we identified 10,281 somatic alterations across 12 cancer types in 2,928 of 3,277 patients (89.4%), many of which would not be revealed in single-tumor analyses. Our study provides a starting point and resources, including an open-access model evaluation platform, for building reliable prognostic and therapeutic strategies that incorporate molecular data
    • …
    corecore